Matlab

    Table of contents
    You are currently comparing two old versions - only when you are comparing against the latest version can you revert. Return to version archive.

    Combined revision comparison

    Comparing version 09:36, 23 Sep 2019 by aduarte with version 15:53, 9 Apr 2020 by aduarte.

    Other changes:

    1. /body/p[5]/a[2]/@href: "http://baco.ipfn.ist.utl.pt/sdas/downloads/SDAS.jar""http://baco.ipfn.ist.utl.pt/sdas/downloads/commons-codec-1.3.jar"
    2. /body/p[5]/a[2]/@title: "http://baco.ipfn.ist.utl.pt/sdas/downloads/SDAS.jar""http://baco.ipfn.ist.utl.pt/sdas/downloads/commons-codec-1.3.jar"

    Version from 09:36, 23 Sep 2019

    This revision modified by aduarte (Ban)

    Follow these steps to integrate the Shared Data Access System in your MatLab code. All the examples were successfully tested in some linux distributions like Gentoo, Fedora and Red Hat.

    Test the java connection

    Before starting to use the system check if JAVA is well configured in MatLab, type in the matlab console:

    version -java

    If you get an answer like: Java 1.5.0_04 with Sun Microsystems Inc. Java HotSpot(TM) Server VM, then you’re ready to start.

    If your version of MatLab has an older version of Java, then you will need to install a newer version and set the MATLAB_JAVA enviroment variable, as described next.

    Set the MATLAB_JAVA value

    You should use the latest version (at least 1.5) of the Sun Java. If your copy of MatLab has a more recent version of Java you can skip this step.
    First you have to find out where is your java home located. To avoid errors, download and run this utility. The value returned by the utility is the MATLAB_JAVA value.

    NOTE: Each time you change system properties, you have to restart MatLab

    Now you have to set the MATLAB_JAVA as a system variable: 
    ./windows.gif

    Open the windows System Properties (right - click on My Computer or go to the Control Panel)
    Select the tab Advanced
    Click on Environment Variables...
    In the system variables click New...
    The Variable name is: MATLAB_JAVA
    In the value field (supposing you have the java_home in the libraries in C:\Program Files\java\jdk1.5.0_04\jre) enter the following value: C:\Program Files\java\jdk1.5.0_04\jre

    ./linux.gif

    Supposing you have the java_home in /opt/jdk1.5.0_04/jre/ :

    export MATLAB_JAVA="/opt/jdk1.5.0_04/jre/"
    

    Download the libraries

    if you have a recent version of Matlab that includes a XML-RPC library, download the following library into a folder of your system:

    SDAS Client

    If you are not sure if your version supports it, you can run on the Matlab console:

    javaclasspath
    

    This will give you a list of all java libraries being loaded at start. If there are no references to apache_xmlrpc_client.jar, apache_xmlrpc_common.jar and apache_xmlrpc_server.jar, then you need to download the following files instead:

    Apache XML-RPC
    Apache Jakarta Commons

    SDAS Core Libraries

    Set the classpath

    Add all of the downloaded libraries to your system classpath.
    Use the matlab static path. More information at the matlab documentation site.

    If your are unable to set the static path on your computer you can use the dynamic path.

    Get a connection to the sdas server

    import org.sdas.core.client.*;
    client = SDASClient('baco.ipfn.tecnico.ulisboa.pt', 8890);
    

    If you get an error check the classpath.

    Search events

    found = client.searchDeclaredEventsByName('S');
    
    found = client.searchDeclaredEventsByName('S');
    
    found = client.searchDeclaredEventsByName('SHOT', 'pt');
    
    found = client.searchDeclaredEventsByUniqueID('SHOT', 'pt');
    
    found = client.searchDeclaredEventsByDescription('SHOT');
    
    found = client.searchDeclaredEventsByDescription('SHOT', 'pt');
    
    for i=1:1:size(found)
        found(i)
    end
    
    max = client.searchMaxEventNumber('0x0000')
    
    min = client.searchMinEventNumber('0x0000')
    

    Search events in a time window

    NOTE: You can construct time with a resolution of picosseconds, just add to the example values for millis, micros, nanos and picos
    NOTE 2: Date constructors have the months index to 0 (January is 0 and December is 11)

    Search events in December 2005:

    date_start = Date(2005, 11, 1);
    date_end = Date(2005, 11, 31);
    tstart = TimeStamp(date_start);
    tend = TimeStamp(date_end);
    eventsFound = client.searchEventsByEventTimeWindow(tstart, tend);
    for i = 1:1:size(eventsFound)
        eventsFound(i)
    end
    

    Search events in the 22 December 2005 between 5pm and 6pm:

    date_start = Date(2005, 11, 22);
    date_end = Date(2005,11,22);
    time_start = Time(17, 0, 0);
    time_end = Time(18, 0, 0);
    tstart = TimeStamp(date_start, time_start);
    tend = TimeStamp(date_end, time_end);
    eventsFound = client.searchEventsByEventTimeWindow(tstart, tend);
    for i = 1:1:size(eventsFound)
        eventsFound(i)
    end
    

    Search parameters

    parametersFound = client.searchParametersByName('DENS');
    
    parametersFound = client.searchParametersByName('DENS', 'pt');
    
    parametersFound = client.searchParametersByUniqueID('DENS');
    
    parametersFound = client.searchParametersByDescription('current');
    
    parametersFound = client.searchParametersByDescription('corrente', 'pt');
    
    for i = 1:1:size(parametersFound)
        parametersFound(i)
    end
    

    Search data

    This function returns the parameters unique identifiers where the data isn’t null for the selected event:

    dataFound = client.searchDataByEvent('0x0000', 17898);
    for i = 1:1:size(dataFound)
        dataFound (i)
    end
    

    Get data

    NOTE: The unique identifiers are CASE-SENSITIVE

    Data for only one parameter

    dataStruct=client.getData('POST.PROCESSED.DENSITY','0x0000', 17898)
    dataStruct=dataStruct(1);
    

    Data for several parameters in the same event

    dataStruct=client.getMultipleData({'POST.PROCESSED.DENSITY', 'POST.PROCESSED.IPLASMA'},'0x0000', 17898)
    dataStructDens=dataStruct(1,1);
    dataStructIP=dataStruct(2,1);
    dens=dataStructDens.getData(); 
    ip=dataStructIP.getData(); 

    Data for several parameters in different events

    dataStruct=client.getMultipleData({'POST.PROCESSED.DENSITY', 'POST.PROCESSED.IPLASMA'},{'0x0000','0x0000'}, [17898,17899])
    dataStructDens=dataStruct(1,1);
    dataStructIP=dataStruct(2,1);
    dens=dataStructDens.getData(); 
    ip=dataStructIP.getData(); 
    

    Data for the same parameter in different events

    dataStruct=client.getMultipleData('POST.PROCESSED.DENSITY',{'0x0000','0x0000'}, [17898,17899])
    dataStructDens=dataStruct(1,1);
    dataStructIP=dataStruct(2,1);
    dens=dataStructDens.getData(); 
    ip=dataStructIP.getData(); 
    

    Data for the same parameter in different event numbers

    dataStruct=client.getMultipleData('POST.PROCESSED.DENSITY', '0x0000', [17898,17899])
    

    This data structure gives you information about:

    • start time
    • end time
    • time of the event
    • mime_type
    • the parameter unique identifier

    The following example shows how to calculate and plot the density at ISTTOK:
    1. The data

    dataStruct=client.getMultipleData({'CENTRAL.OS9_ADC_VME_I8.IF0CS',
    'CENTRAL.OS9_ADC_VME_I8.IF0SN'},'0x0000', 11244);
    cosine = dataStruct(1,1).getData;
    isine = dataStruct(2,1).getData;
    

    2. Calculate the phase

    len = length(cosine)
    cosavg = cosine - max(movavg(cosine, 10, 10))/2 - min(movavg(cosine, 10, 10))/2;
    sinavg = isine - max(movavg(isine, 10, 10))/2 - min(movavg(isine, 10, 10))/2;
    for j = 1:len
      phase(j) = atan2(double(sinavg(j)), double(cosavg(j)));
    end
    

    3. Unwrap

    unwraped = unwrap(phase);
    

    4. The start time

    tstart = dataStruct(1,1).getTStart
    

    5. The end time

    tend = dataStruct(1,1).getTEnd
    

    6. The time between samples is:

    tbs= (tend.getTimeInMicros - tstart.getTimeInMicros)/len
    

    7. The events

    events = dataStruct(1,1).getEvents;
    

    8. The event time (I’m assuming the event I want is at the index 0, but I should check first...)

    tevent = events(1,1).getTimeStamp
    

    9. The delay of the start time relative to the event time

    delay = tstart.getTimeInMicros - tevent.getTimeInMicros
    

    10. Create the time array

    times = delay:tbs:delay+tbs*(len-1);
    

    11. Normalize the data

    dens = -7e17 * unwraped;
    thold = dens(len-100:len);
    density = dens-mean(thold);
    

    11. Plot the chart

    plot(times, density)
    

    Version as of 15:53, 9 Apr 2020

    This revision modified by aduarte (Ban)

    Follow these steps to integrate the Shared Data Access System in your MatLab code. All the examples were successfully tested in some linux distributions like Gentoo, Fedora and Red Hat.

    Test the java connection

    Before starting to use the system check if JAVA is well configured in MatLab, type in the matlab console:

    version -java

    If you get an answer like: Java 1.5.0_04 with Sun Microsystems Inc. Java HotSpot(TM) Server VM, then you’re ready to start.

    If your version of MatLab has an older version of Java, then you will need to install a newer version and set the MATLAB_JAVA enviroment variable, as described next.

    Set the MATLAB_JAVA value

    You should use the latest version (at least 1.5) of the Sun Java. If your copy of MatLab has a more recent version of Java you can skip this step.
    First you have to find out where is your java home located. To avoid errors, download and run this utility. The value returned by the utility is the MATLAB_JAVA value.

    NOTE: Each time you change system properties, you have to restart MatLab

    Now you have to set the MATLAB_JAVA as a system variable: 
    ./windows.gif

    Open the windows System Properties (right - click on My Computer or go to the Control Panel)
    Select the tab Advanced
    Click on Environment Variables...
    In the system variables click New...
    The Variable name is: MATLAB_JAVA
    In the value field (supposing you have the java_home in the libraries in C:\Program Files\java\jdk1.5.0_04\jre) enter the following value: C:\Program Files\java\jdk1.5.0_04\jre

    ./linux.gif

    Supposing you have the java_home in /opt/jdk1.5.0_04/jre/ :

    export MATLAB_JAVA="/opt/jdk1.5.0_04/jre/"
    

    Download the libraries

    if you have a recent version of Matlab that includes a XML-RPC library, download the following library into a folder of your system:

    SDAS Client

    If you are not sure if your version supports it, you can run on the Matlab console:

    javaclasspath
    

    This will give you a list of all java libraries being loaded at start. If there are no references to apache_xmlrpc_client.jar, apache_xmlrpc_common.jar and apache_xmlrpc_server.jar, then you need to download the following files instead:

    Apache XML-RPC
    Apache Jakarta Commons

    SDAS Core Libraries

    Set the classpath

    Add all of the downloaded libraries to your system classpath.
    Use the matlab static path. More information at the matlab documentation site.

    If your are unable to set the static path on your computer you can use the dynamic path.

    Get a connection to the sdas server

    import org.sdas.core.client.*;
    client = SDASClient('baco.ipfn.tecnico.ulisboa.pt', 8890);
    

    If you get an error check the classpath.

    Search events

    found = client.searchDeclaredEventsByName('S');
    
    found = client.searchDeclaredEventsByName('S');
    
    found = client.searchDeclaredEventsByName('SHOT', 'pt');
    
    found = client.searchDeclaredEventsByUniqueID('SHOT', 'pt');
    
    found = client.searchDeclaredEventsByDescription('SHOT');
    
    found = client.searchDeclaredEventsByDescription('SHOT', 'pt');
    
    for i=1:1:size(found)
        found(i)
    end
    
    max = client.searchMaxEventNumber('0x0000')
    
    min = client.searchMinEventNumber('0x0000')
    

    Search events in a time window

    NOTE: You can construct time with a resolution of picosseconds, just add to the example values for millis, micros, nanos and picos
    NOTE 2: Date constructors have the months index to 0 (January is 0 and December is 11)

    Search events in December 2005:

    date_start = Date(2005, 11, 1);
    date_end = Date(2005, 11, 31);
    tstart = TimeStamp(date_start);
    tend = TimeStamp(date_end);
    eventsFound = client.searchEventsByEventTimeWindow(tstart, tend);
    for i = 1:1:size(eventsFound)
        eventsFound(i)
    end
    

    Search events in the 22 December 2005 between 5pm and 6pm:

    date_start = Date(2005, 11, 22);
    date_end = Date(2005,11,22);
    time_start = Time(17, 0, 0);
    time_end = Time(18, 0, 0);
    tstart = TimeStamp(date_start, time_start);
    tend = TimeStamp(date_end, time_end);
    eventsFound = client.searchEventsByEventTimeWindow(tstart, tend);
    for i = 1:1:size(eventsFound)
        eventsFound(i)
    end
    

    Search parameters

    parametersFound = client.searchParametersByName('DENS');
    
    parametersFound = client.searchParametersByName('DENS', 'pt');
    
    parametersFound = client.searchParametersByUniqueID('DENS');
    
    parametersFound = client.searchParametersByDescription('current');
    
    parametersFound = client.searchParametersByDescription('corrente', 'pt');
    
    for i = 1:1:size(parametersFound)
        parametersFound(i)
    end
    

    Search data

    This function returns the parameters unique identifiers where the data isn’t null for the selected event:

    dataFound = client.searchDataByEvent('0x0000', 17898);
    for i = 1:1:size(dataFound)
        dataFound (i)
    end
    

    Get data

    NOTE: The unique identifiers are CASE-SENSITIVE

    Data for only one parameter

    dataStruct=client.getData('POST.PROCESSED.DENSITY','0x0000', 17898)
    dataStruct=dataStruct(1);
    

    Data for several parameters in the same event

    dataStruct=client.getMultipleData({'POST.PROCESSED.DENSITY', 'POST.PROCESSED.IPLASMA'},'0x0000', 17898)
    dataStructDens=dataStruct(1,1);
    dataStructIP=dataStruct(2,1);
    dens=dataStructDens.getData(); 
    ip=dataStructIP.getData(); 

    Data for several parameters in different events

    dataStruct=client.getMultipleData({'POST.PROCESSED.DENSITY', 'POST.PROCESSED.IPLASMA'},{'0x0000','0x0000'}, [17898,17899])
    dataStructDens=dataStruct(1,1);
    dataStructIP=dataStruct(2,1);
    dens=dataStructDens.getData(); 
    ip=dataStructIP.getData(); 
    

    Data for the same parameter in different events

    dataStruct=client.getMultipleData('POST.PROCESSED.DENSITY',{'0x0000','0x0000'}, [17898,17899])
    dataStructDens=dataStruct(1,1);
    dataStructIP=dataStruct(2,1);
    dens=dataStructDens.getData(); 
    ip=dataStructIP.getData(); 
    

    Data for the same parameter in different event numbers

    dataStruct=client.getMultipleData('POST.PROCESSED.DENSITY', '0x0000', [17898,17899])
    

    This data structure gives you information about:

    • start time
    • end time
    • time of the event
    • mime_type
    • the parameter unique identifier

    The following example shows how to calculate and plot the density at ISTTOK:
    1. The data

    dataStruct=client.getMultipleData({'CENTRAL.OS9_ADC_VME_I8.IF0CS',
    'CENTRAL.OS9_ADC_VME_I8.IF0SN'},'0x0000', 11244);
    cosine = dataStruct(1,1).getData;
    isine = dataStruct(2,1).getData;
    

    2. Calculate the phase

    len = length(cosine)
    cosavg = cosine - max(movavg(cosine, 10, 10))/2 - min(movavg(cosine, 10, 10))/2;
    sinavg = isine - max(movavg(isine, 10, 10))/2 - min(movavg(isine, 10, 10))/2;
    for j = 1:len
      phase(j) = atan2(double(sinavg(j)), double(cosavg(j)));
    end
    

    3. Unwrap

    unwraped = unwrap(phase);
    

    4. The start time

    tstart = dataStruct(1,1).getTStart
    

    5. The end time

    tend = dataStruct(1,1).getTEnd
    

    6. The time between samples is:

    tbs= (tend.getTimeInMicros - tstart.getTimeInMicros)/len
    

    7. The events

    events = dataStruct(1,1).getEvents;
    

    8. The event time (I’m assuming the event I want is at the index 0, but I should check first...)

    tevent = events(1,1).getTimeStamp
    

    9. The delay of the start time relative to the event time

    delay = tstart.getTimeInMicros - tevent.getTimeInMicros
    

    10. Create the time array

    times = delay:tbs:delay+tbs*(len-1);
    

    11. Normalize the data

    dens = -7e17 * unwraped;
    thold = dens(len-100:len);
    density = dens-mean(thold);
    

    11. Plot the chart

    plot(times, density)
    
    Powered by MindTouch Core