Python

    Table of contents
    You are currently comparing two old versions - only when you are comparing against the latest version can you revert. Return to version archive.

    Combined revision comparison

    Comparing version 22:55, 15 Jul 2018 by aduarte with version 10:08, 16 Jul 2018 by aduarte.

    ...

    Get data

    NOTE: The unique identifiers are CASE-SENSITIVE

    The returned data structure gives you information about:

    • start time
    • end time
    • time of the event
    • mime_type
    • the parameter unique identifier

    Import extra libraries

    import numpy
    import matplotlib.pyplot as plt
    

    Data for only one parameter

    dataStructArray=client.getData('POST.PROCESSED.DENSITY','0x0000', 17898)
    dataStruct=dataStructArray[0]
    density=dataStruct.getData()
    tstart = dataStruct.getTStart()
    tend = dataStruct.getTEnd()
    

    Calculate the time between samples

    tbs = (tend.getTimeInMicros() - tstart.getTimeInMicros())/len(density)
    

    Get the events  associated with this data

    events = dataStruct.get('events')

    The event time (I’m assuming the event I want is at the index 0, but I should check first...)

    tevent = TimeStamp(tstamp=events[0].get('tstamp'))
    

    The delay of the start time relative to the event time

    delay = tstart.getTimeInMicros() - tevent.getTimeInMicros()
    

    Finally create the time array

    times = numpy.linspace(delay,delay+tbs*(len(density)-1),len(density))
    

    And plot the data

    plt.plot(times, density); plt.show()
    

    Version from 22:55, 15 Jul 2018

    This revision modified by aduarte (Ban)

    ...

    Version as of 10:08, 16 Jul 2018

    This revision modified by aduarte (Ban)

    ...

    Get data

    NOTE: The unique identifiers are CASE-SENSITIVE

    The returned data structure gives you information about:

    • start time
    • end time
    • time of the event
    • mime_type
    • the parameter unique identifier

    Import extra libraries

    import numpy
    import matplotlib.pyplot as plt
    

    Data for only one parameter

    dataStructArray=client.getData('POST.PROCESSED.DENSITY','0x0000', 17898)
    dataStruct=dataStructArray[0]
    density=dataStruct.getData()
    tstart = dataStruct.getTStart()
    tend = dataStruct.getTEnd()
    

    Calculate the time between samples

    tbs = (tend.getTimeInMicros() - tstart.getTimeInMicros())/len(density)
    

    Get the events  associated with this data

    events = dataStruct.get('events')

    The event time (I’m assuming the event I want is at the index 0, but I should check first...)

    tevent = TimeStamp(tstamp=events[0].get('tstamp'))
    

    The delay of the start time relative to the event time

    delay = tstart.getTimeInMicros() - tevent.getTimeInMicros()
    

    Finally create the time array

    times = numpy.linspace(delay,delay+tbs*(len(density)-1),len(density))
    

    And plot the data

    plt.plot(times, density); plt.show()
    
    Powered by MindTouch Core