Matlab

    Version as of 08:36, 6 Apr 2025

    to this version.

    Return to Version archive.

    View current version

    Follow these steps to integrate the Shared Data Access System in your MatLab code. All the examples were successfully tested in some linux distributions like Gentoo, Fedora and Red Hat.

    Download the libraries

    Download the following libraries into a folder of your system:

    Apache XML-RPC
    Apache Jakarta Commons
    SDAS Core Libraries
    SDAS Client

    Since the server at baco computer uses an older version, if you are planing on accessing it, you should download this version of SDAS Core Libraries and Client:

    SDAS Core Libraries
    SDAS Client

    Set the classpath

    Add all of the previous libraries to your system classpath.
    Use the matlab static path. More information at the matlab documentation site.

    Set the MATLAB_JAVA value

    You should use the last version (at least 1.5) of the Sun Java.
    First you have to find out where is your java home located. To avoid errors, download and run this utility. The value returned by the utility is the MATLAB_JAVA value.

    Now you have to set the MATLAB_JAVA as a system variable: 
    ./windows.gif

    Open the windows System Properties (right - click on My Computer or go to the Control Panel)
    Select the tab Advanced
    Click on Environment Variables...
    In the system variables click New...
    The Variable name is: MATLAB_JAVA
    In the value field (supposing you have the java_home in the libraries in C:\Program Files\java\jdk1.5.0_04\jre) enter the following value: C:\Program Files\java\jdk1.5.0_04\jre

    ./linux.gif


    Supposing you have the java_home in /opt/jdk1.5.0_04/jre/ :

    export MATLAB_JAVA="/opt/jdk1.5.0_04/jre/"

    Test the java connection

    NOTE: Each time you change system properties, you have to restart MatLab

    Before starting to use the system check if JAVA is well configured in MatLab, type in the matlab console:

    version -java

    If you get an answer like: Java 1.5.0_04 with Sun Microsystems Inc. Java HotSpot(TM) Server VM, then you’re ready to start. Otherwise check all the previous steps.

    Get a connection to the sdas server

    import org.sdas.core.client.*;
    import org.sdas.core.time.*;
    client = SDASClient('baco.ipfn.ist.utl.pt', 8888);

    If you get an error check the classpath.

    Search events

    found = client.searchDeclaredEventsByName('S');
    
    found = client.searchDeclaredEventsByName('S');
    
    found = client.searchDeclaredEventsByName('SHOT', 'pt');
    
    found = client.searchDeclaredEventsByUniqueID('SHOT', 'pt');
    
    found = client.searchDeclaredEventsByDescription('SHOT');
    
    found = client.searchDeclaredEventsByDescription('SHOT', 'pt');
    
    for i=1:1:size(found)
        found(i)
    end
    
    max = client.searchMaxEventNumber('0x0000')
    
    min = client.searchMinEventNumber('0x0000')
    

    Search events in a time window

    NOTE: You can construct time with a resolution of picosseconds, just add to the example values for millis, micros, nanos and picos
    NOTE 2: Date constructors have the months index to 0 (January is 0 and December is 11)

    Search events in December 2005:

    date_start = Date(2005, 11, 1);
    date_end = Date(2005, 11, 31);
    tstart = TimeStamp(date_start);
    tend = TimeStamp(date_end);
    eventsFound = client.searchEventsByEventTimeWindow(tstart, tend);
    for i = 1:1:size(eventsFound)
        eventsFound(i)
    end
    

    Search events in the 22 December 2005 between 5pm and 6pm:

    date_start = Date(2005, 11, 22);
    date_end = Date(2005,11,22);
    time_start = Time(17, 0, 0);
    time_end = Time(18, 0, 0);
    tstart = TimeStamp(date_start, time_start);
    tend = TimeStamp(date_end, time_end);
    eventsFound = client.searchEventsByEventTimeWindow(tstart, tend);
    for i = 1:1:size(eventsFound)
        eventsFound(i)
    end
    

    Search parameters

    parametersFound = client.searchParametersByName('DENS');
    
    parametersFound = client.searchParametersByName('DENS', 'pt');
    
    parametersFound = client.searchParametersByUniqueID('DENS');
    
    parametersFound = client.searchParametersByDescription('current');
    
    parametersFound = client.searchParametersByDescription('corrente', 'pt');
    
    for i = 1:1:size(parametersFound)
        parametersFound(i)
    end
    

    Search data

    This function returns the parameters unique identifiers where the data isn’t null for the selected event:

    dataFound = client.searchDataByEvent('0x0000', 17898);
    for i = 1:1:size(dataFound)
        dataFound (i)
    end
    

    Get data

    NOTE: The unique identifiers are CASE-SENSITIVE

    Data for only one parameter

    dataStruct=client.getData('POST.PROCESSED.DENSITY','0x0000', 17898)
    dataStruct=dataStruct(1);
    

    Data for several parameters in the same event

    dataStruct=client.getMultipleData({'POST.PROCESSED.DENSITY', 'POST.PROCESSED.IPLASMA'},'0x0000', 17898)
    dataStructDens=dataStruct(1,1);
    dataStructIP=dataStruct(2,1);
    dens=dataStructDens.getData(); 
    ip=dataStructIP.getData(); 

    Data for several parameters in different events

    dataStruct=client.getMultipleData({'POST.PROCESSED.DENSITY', 'POST.PROCESSED.IPLASMA'},{'0x0000','0x0000'}, [17898,17899])
    dataStructDens=dataStruct(1,1);
    dataStructIP=dataStruct(2,1);
    dens=dataStructDens.getData(); 
    ip=dataStructIP.getData(); 
    

    Data for the same parameter in different events

    dataStruct=client.getMultipleData('POST.PROCESSED.DENSITY',{'0x0000','0x0000'}, [17898,17899])
    dataStructDens=dataStruct(1,1);
    dataStructIP=dataStruct(2,1);
    dens=dataStructDens.getData(); 
    ip=dataStructIP.getData(); 
    

    Data for the same parameter in different event numbers

    dataStruct=client.getMultipleData('POST.PROCESSED.DENSITY', '0x0000', [17898,17899])
    

    This data structure gives you information about:

    • start time
    • end time
    • time of the event
    • mime_type
    • the parameter unique identifier

    The following example shows how to calculate and plot the density at ISTTOK:
    1. The data

    dataStruct=client.getMultipleData({'CENTRAL.OS9_ADC_VME_I8.IF0CS',
    'CENTRAL.OS9_ADC_VME_I8.IF0SN'},'0x0000', 11244);
    cosine = dataStruct(1,1).getData;
    isine = dataStruct(2,1).getData;
    

    2. Calculate the phase

    len = length(cosine)
    cosavg = cosine - max(movavg(cosine, 10, 10))/2 - min(movavg(cosine, 10, 10))/2;
    sinavg = isine - max(movavg(isine, 10, 10))/2 - min(movavg(isine, 10, 10))/2;
    for j = 1:len
      phase(j) = atan2(double(sinavg(j)), double(cosavg(j)));
    end
    

    3. Unwrap

    unwraped = unwrap(phase);
    

    4. The start time

    tstart = dataStruct(1,1).getTStart
    

    5. The end time

    tend = dataStruct(1,1).getTEnd
    

    6. The time between samples is:

    tbs= (tend.getTimeInMicros - tstart.getTimeInMicros)/len
    

    7. The events

    events = dataStruct(1,1).getEvents;
    

    8. The event time (I’m assuming the event I want is at the index 0, but I should check first...)

    tevent = events(1,1).getTimeStamp
    

    9. The delay of the start time relative to the event time

    delay = tstart.getTimeInMicros - tevent.getTimeInMicros
    

    10. Create the time array

    times = delay:tbs:delay+tbs*(len-1);
    

    11. Normalize the data

    dens = -7e17 * unwraped;
    thold = dens(len-100:len);
    density = dens-mean(thold);
    

    11. Plot the chart

    plot(times, density)
    
    Powered by MindTouch Core